Competition for Scarce Resources*

Péter Eső
Kellogg School of Management

Volker Nocke
University of Pennsylvania

Lucy White
Harvard Business School

September 2006

Abstract

We show that the efficient allocation of production capacity can turn a competitive industry and downstream market into an imperfectly competitive one. Even though downstream firms have symmetric production technologies, the downstream industry structure will be symmetric only if capacity is sufficiently scarce. Otherwise it will be asymmetric, with one large “fat” capacity-hoarding firm and a fringe of smaller “lean and fit” firms, so that Tobin’s Q varies inversely with firm size. This is so even if the number of firms is infinitely large. As demand or input quantity varies, the industry may switch between symmetric and asymmetric phases, generating predictions for firm size and costs across the business cycle. Surprisingly, an increase in available capacity resulting in such a switch can cause a reduction in total output and consumer surplus.

*We thank Liam Brunt, Jacques Crémer, William Rogerson, **more names to be added, and seminar participants at the Northwestern-Toulouse IO Workshop (2005), the University of Bern, Bocconi University, the CEPR Applied Industrial Organization workshop (2006) in Madeira, and the ESEM in Vienna (2006) for valuable comments.
1 Introduction

Standard models of industrial organization treat inputs as being in perfectly elastic supply and their trade disconnected from the downstream market. However, in many real-world industries the firms that compete downstream also face each other in the input market where supply is inelastic. For example, jewelry makers that vie for the same customers also compete for precious stones whose supply is limited.1 Competing airlines divide a fixed number of “slots” at a given airport; software companies that produce competing operating systems draw from the same pool of highly specialized programmers; and so on. Retailers of gas (petrol) also have a common input that is in scarce supply.

In this paper we investigate the interaction between efficient input markets and competitive downstream industries, and find some unexpected results. For example, modelling input and output competition between symmetric firms separately typically gives symmetric outcomes. In contrast, we show that this may not be the case when firms compete in both input and output markets. We study a model where firms with the same decreasing-returns technology compete first for scarce production “capacity” in an input market, and then downstream à la Cournot subject to their resulting capacity constraints. Assuming that capacity is allocated efficiently for the industry (in the sense that each unit is allocated to the producer that values it the most), we show that, depending on how much capacity is available, there may only exist an asymmetric equilibrium.

Thus, strategic behavior in the input market can transform an otherwise symmetric downstream industry into a natural oligopoly with endogenous asymmetries. When the amount of total capacity is sufficiently large, the equilibrium of the game is an asymmetric one: one firm buys up capacity and hoards it in order to keep up the market price of output, whilst the other firms remain small and their production capacity-constrained. The large firm thus appears to be a “fat cat”, purchasing too much capacity and using it very inefficiently; whereas the other, smaller firms appear “lean and mean”, making high rates of profit despite their low capacity purchases. We show that this industry structure persists even as the number of firms approaches infinity. That is, if the total available capacity is sufficiently large, then no matter how many downstream

1See Spar (2006) for an account of the diamond market.
competitors there are, the resulting industry structure is that one large, seemingly inefficient firm dominates the market, and a non-negligible competitive fringe produces the rest. On the other hand, when the total capacity to be distributed is lower than a certain threshold, the firms are of equal size. Each firm then gets the same capacity and fully uses it in the downstream market.

When capacity is above the threshold, why do the small, productive firms not expand to steal the downstream market from the large, inefficient firm? An econometrician or policy-maker observing such a situation might suspect that some unobserved regulation, illegal anti-competitive behavior or political influence protect the large firm from its more efficient rivals. But our model helps us to understand that this is not necessarily the case: the asymmetric outcome may simply be the result of standard non-cooperative behavior. The reason that the small firms’ rate of profit is so high is precisely because the large firm is buying up input to make it unprofitable for them to expand. If the large firm were not so “fat” then the small firms would expand output and their rate of profit would decline.\(^2\)

Our results can help to explain the size distribution of firms in industries where inputs are scarce, which may be very asymmetric even though it is far from clear that the largest firms enjoy any cost advantage over the smaller firms. For example, De Beers, the firm that dominates the diamond market, has followed a strategy of buying up uncut diamonds and hoarding them in order to maintain the price of cut diamonds (Spar, 2006). Similarly, in the UK it was documented that the large petrol companies were buying up petrol-retailing forecourts (gas stations) and removing this essential input from the market by filling the underground tanks with concrete (MMC, 1990). Another example may be Microsoft, the dominant firm in the market for PC operating systems, which employs more software engineers and yet has a slower update cycle than some of its rivals (e.g., Apple).\(^3\) Famously, Salomon Brothers engineered a

\(^2\)The small firms may even benefit from the inefficiency of the large firm, making more profits than they would if the input were distributed symmetrically by fiat (thus resulting in a symmetric Cournot outcome). Indeed, depending upon parameters, the large firm may be providing a public good in buying up the excess input to reduce the supply of output. Not only is its rate of profit necessarily lower than that of the small firms, it may be that its absolute level of profit is lower than theirs too.

\(^3\)Walter Mossberg, an influential technology writer notes (WSJ, 2004 September 14): \("[T]he Mac operating system is more capable, more modern and more attractive than Win-
“short squeeze” in the market for Treasury Bonds, submitting bids for up to 94% of the Treasury bonds available at auction in order to monopolise the secondary market in this securities (Jegadeesh (1993) shows that after-market prices were significantly higher as a result). Finally, the prevailing market structure at many large airports is that one airline hoards most of the slots (see Borenstein (1989) and (1991)). Of course, in many of these industries, capacity or input is not literally sold in an “efficient auction”. However, we show that the same allocation can be generated if inputs are sold in a uniform price share auction, or indeed, are simply allocated by Coasian bargaining among the firms themselves.

In explaining the asymmetric size distribution of firms, our paper contributes to a sizeable literature. Ghemawat (1990) studies a duopoly model where the initially larger (but not more efficient) competitor ends up absorbing all investment opportunities in order to keep product prices high. His model involves price competition subject to capacity constraints. Besanko and Doraszelski (2004) set up that a general dynamic investment game and show that that when firms compete in prices, an asymmetric market structure arises; but that the outcome is symmetric under Cournot competition. In contrast two these two papers, in our model, we have Cournot (quantity) competition in the downstream market, yet we end up with an asymmetric allocation when the total available capacity is large, and not when it is small. Our work is also related to Riordan (1998), who shows that a dominant firm facing a competitive fringe can benefit from raising its rivals costs by acquiring upstream capacity which is in imperfectly elastic supply; but he assumes rather than derives the asymmetric market structure which arises endogenously in our model. Another body of work that we contribute to is the literature on auctions with externalities. In our paper, downstream competition between bidders imposes a particular structure on the externalities between them, which allows us to derive more specific results than has generally been possible in that literature (see also Katz and Shapiro (1986) and Jehiel and Moldavanu (2000), who consider the case when rival firms bid for a patent).

The threshold level of capacity at which production switches from being symmetric to being asymmetric varies according to the level of demand down-
stream. Starting at the threshold with symmetric firms (which is the socially most efficient point), a contraction in demand will cause all firms but one to shrink their output, while the large (“fat”) firm absorbs the excess capacity. An expansion in demand, by contrast, will generate a rise in the price of output, but the industry will remain symmetric. Thus the efficient capacity auction exacerbates the procyclicality of output across the cycle because output drops excessively as demand shrinks. The large firm has counter-cyclical marginal costs whereas the small firms have pro-cyclical marginal costs. Tobin’s Q is inversely correlated with firm size.

Our result has some important implications for policy in markets constrained by a relative scarcity of inputs. A government may be concerned about the asymmetric, oligopolistic structure that emerges in such industries. We show that encouraging downstream entry in such markets will not help much. In particular, even as the number of downstream firms becomes large, the equilibrium when available capacity is above the threshold remains asymmetric and uncompetitive, resembling the textbook model of a dominant firm constrained by a competitive fringe. But in contrast to that model, even as the number of downstream firms goes to infinity, downstream output does not converge to competitive levels in our model and the one-firm concentration ratio remains bounded away from zero.4

More surprisingly, encouraging upstream entry as a response to input scarcity might even make things worse. Perhaps the most unexpected result of our model is that increases in the quantity of input (capacity) available can result in reductions in the total quantity of output. This happens when the total available capacity increases around the capacity threshold and the capacity distribution changes from symmetric to asymmetric. At this capacity threshold, all firms are capacity constrained: and so a well-intentioned government might try to encourage additional provision of capacity upstream, thinking that this will slacken downstream capacity constraints, and thence increase output, benefiting consumers. But we show that, near the capacity threshold, such an attempt would be misguided, because increasing capacity beyond the capacity threshold actually results in a discrete reduction in output and consumer surplus. This re-

4There are also some technical differences. In the dominant firm model, unlike in ours, the dominant firm sets price, taking as given the supply curve of the competitive fringe.
duction in output results from the switch to the asymmetric allocation of input, which, as noted above, is productively inefficient. (It is nevertheless the outcome of an efficient auction when the quantity of input becomes large enough, precisely because it results in reduced output and higher prices downstream.) Downstream firms’ total profit is continuous at the capacity-threshold (they are indifferent between the symmetric and asymmetric allocation) but total output (and hence consumer surplus) falls discontinuously due to the introduction of production inefficiencies as production becomes asymmetric.

Thus, the problem created by input scarcity cannot be resolved by encouraging entry either upstream or downstream when inputs are sold in an efficient auction. The implication is that it is important to pay close attention to the way the market for inputs operates. In recent years, governments have employed economists to help them (re-)design markets for the allocation of scarce inputs. The typical prescription has been that the old “beauty contests” for allocating input (in the case of spectrum) or rigid structures of bilateral contracts and vertical integration (in the case of electricity and gas) should be replaced by centralized auction markets for the input. The idea was that if all input is brought to a centralized market then one can ensure that those that value the input most highly are able to purchase it, resulting in efficient production. Our results suggest that this intuition is misplaced in a context where the purchasing firms compete downstream. It is not entirely surprising that an efficient auction, since it maximizes the bidders’ surplus, may allocate the input in a way that results in a lack of downstream competition. Perhaps more surprising is that an “efficient” auction will result in production inefficiencies in the presence of diseconomies of scale or complementarities between inputs. This suggests that allocating input by some more decentralised means such as bilateral contracting might actually be better for consumers, contrary to intuition.

5 Examples include the sale of electricity by generating companies to retailers; the sale of licences to mobile phone operators; the sale of oil tracts to production companies; the sale of forestry tracts to logging companies; the sale of Treasury Bills at auction.

6 This idea originates in Borenstein (1988). However, the result is not completely evident. For example, McAfee (1999) argues that, when large and small incumbents compete in an auction to purchase an additional unit of capacity, a small (constrained) firm will win the auction if there are at least two large (unconstrained) firms. McAfee does not consider the full dynamic game in which capacity is acquired over time. We show that, when inputs are allocated simultaneously, the symmetric outcome that he identifies is no longer an equilibrium.
The paper is organized as follows. In Section 2, we outline the model and derive preliminary results. In Section 3, we derive the unique equilibrium of our game—which is Cournot competition following the joint-profit maximizing allocation of production capacities—and characterize several of its properties. We analyze the limiting case, in which the number of firms grows infinitely large, and we discuss welfare. In Section 4, we describe some testable predictions of our model, such as the relationship between Tobin’s Q and firm size. In Section 5, we show that our main results continue to hold when competition between firms is differentiated-goods Bertrand rather than homogeneous-goods Cournot. Section 6 concludes.

2 Model and Preliminary Results

The model is a two-stage game where in the first stage n ex-ante identical firms are allocated production capacities so that each unit of capacity ends up with the firm that values it the most. The procedure, which is for now treated as a “black box”, may be an efficient auction, or efficient Coasian bargaining among the firms. Then, in the second stage, the same firms compete—à la Cournot and subject to their capacity constraints—in a market for a homogenous good. The firms’ production technologies exhibit increasing marginal costs, and the market demand is downward sloping. The participants have no private information, everything is commonly known.

In this section we introduce the notation that formally describes this model, and perform some preliminary analysis. In particular, we characterize certain benchmarks and solve for the unique equilibrium of the second-period subgame (Cournot competition with capacity constraints). This enables us to derive the equilibrium market structure and discuss its properties in Section 3.

2.1 Notation and Assumptions

Denote the total available capacity by K, and the capacities of the firms, determined in the first-period auction (or through efficient Coasian bargaining), by

7We further discuss the efficiency criterion in Section 2.3. We discuss auction rules that yield an efficient capacity allocation for the industry in Section 4.1.
k_i, $i = 1, \ldots, n$, where $\sum_i k_i = K$.

Denote the inverse demand function in the downstream market by $P(Q)$, where Q is the total production. We assume that P is twice differentiable, and that both $P(Q)$ and $P'(Q)Q$ are strictly decreasing for all $Q > 0$. Firm i’s cost of producing $q_i \leq k_i$ units is $c(q_i)$, while its cost of producing more than k_i units is infinity. We assume that c is twice differentiable, strictly increasing, and strictly convex. Finally, we assume that producing a limited amount of the good is socially desirable: $P(Q) - c'(Q)$ is positive for $Q = 0$, and negative as $Q \to \infty$.

We can write the profit of firm i in the downstream market for quantity $q_i \leq k_i$ and total output from firms other than i, Q_{-i}, as

$$\pi_i(q_i, Q_{-i}) = P(Q_{-i} + q_i)q_i - c(q_i). \quad (1)$$

The marginal profit of firm i given the other firms’ total production is $\partial \pi_i / \partial q_i = P'(Q_{-i} + q_i)q_i + P(Q_{-i} + q_i) - c'(q_i)$.

The assumptions on the market demand and individual cost functions made above are standard in the literature. They ensure that π_i is concave in q_i, and that the quantities are strategic substitutes,

$$\frac{\partial^2 \pi_i}{\partial q_i \partial Q_{-i}} \equiv P''(Q_{-i} + q_i)q_i + P'(Q_{-i} + q_i) < 0,$$

where the inequality follows from $d[P'(Q)Q]/dQ = P''(Q)Q + P'(Q) < 0$, $P'(Q) < 0$, and $q_i \in [0, Q_{-i} + q_i]$.

The assumptions are also known to imply that in the Cournot game without capacity constraints, there exists a unique equilibrium. The per-firm output in the unconstrained Cournot equilibrium, denoted by q^*, satisfies

$$\frac{\partial \pi_i(q^*, (n-1)q^*)}{\partial q_i} = P'(nq^*)q^* + P(nq^*) - c'(q^*) = 0. \quad (2)$$

This is just the first-order condition of maximizing π_i in q_i given Q_{-i}, and using $Q_{-i} = (n-1)q^*$. It is easy to see that under our assumptions, there is a unique solution in q^*: Consider the left-hand side of (2). At $q^* = 0$, it is positive, while as $q^* \to \infty$, it becomes negative by assumption. Its derivative in q^* is $nP''(nq^*)q^* + P'(nq^*)(n+1) - c''(q^*) < 0$. Therefore, there exists a unique q^*
at which it equals zero, and so (2) is satisfied.

We will use \(r_i(Q_{-i}) \) to refer to the best response of firm \(i \) to the total production of the other firms, \(Q_{-i} \), when firm \(i \) does not face a binding capacity constraint. That is, \(r_i(Q_{-i}) = \arg \max_{q_i} \pi_i(q_i, Q_{-i}) \). Equivalently, \(r_i(Q_{-i}) \) can be characterized by the first-order condition of this maximization, that is,

\[
\frac{\partial \pi_i(r_i(Q_{-i}), Q_{-i})}{\partial q_i} = P'(Q)r_i(Q_{-i}) + P(Q) - c'(r_i(Q_{-i})) \equiv 0, \tag{3}
\]

where \(Q = Q_{-i} + r_i(Q_{-i}) \). By totally differentiating this identity with respect to \(Q_{-i} \) and rearranging, we find that

\[
r_i'(Q_{-i}) = -\frac{\partial^2 \pi_i / \partial q_i \partial Q_{-i}}{\partial^2 \pi_i / \partial q_i^2} = -\frac{P''(Q)r_i(Q_{-i}) + P'(Q)}{P''(Q)r_i(Q_{-i}) + 2P'(Q) - c''(r_i(Q_{-i}))} \in (-1, 0).
\]

The unconstrained Cournot equilibrium satisfies \(q^* = r_i((n-1)q^*) \). To ease notation, we drop the reference to firm \(i \)'s identity when referring to the best response function because the best-response functions are identical across the firms.

There are two other industry-structure benchmarks besides the unconstrained symmetric Cournot outcome (where the production is \(q^* \) per firm and \(nq^* \) total) that will come up in later in the section. The monopoly production in the downstream market is denoted by \(Q^M \), where \(Q^M = \arg \max_Q P(Q)Q - c(Q) \), that is,

\[
P'(Q^M)Q^M + P(Q^M) = c'(Q^M). \tag{4}
\]

The other market structure that will turn out to be important for us is that of a perfectly coordinated symmetric cartel. By definition, the symmetric cartel output maximizes the firms’ joint profits while each firm produces one-\(n \)th of the total output. That is, the total output in the cartel, \(Q^C \), maximizes \(P(Q)Q - nc(Q/n) \), and so

\[
P'(Q^C)Q^C + P(Q^C) = c'(Q^C/n). \tag{5}
\]

Note that the monopoly output is less than the total production of the symmetric cartel, \(Q^M < Q^C \), because the marginal cost function is strictly increasing.
2.2 The Second-Period Cournot Subgame

Let \(\Pi_i(k_1, \ldots, k_n) \) denote the (indirect) profit of firm \(i \) in the capacity-constrained Cournot game given that the capacity allocation is \((k_1, \ldots, k_n) \). We need to know if \(\Pi_i \) is well-defined, that is, whether there is a unique capacity constrained Cournot equilibrium in the downstream market for any capacity allocation \((k_1, \ldots, k_n) \). Proposition 1 settles this issue.\(^8\) In what follows, without loss of generality and purely for the ease of notation, we relabel the firms in increasing order of capacities, so that \(k_1 \leq \ldots \leq k_n \) in any capacity allocation.

Proposition 1 For any capacity allocation, there is a unique equilibrium in the capacity-constrained Cournot game. The equilibrium is \(q_i = k_i \) for \(i = 1, \ldots, m \) and \(q_i = q^U_m \) for \(i = m + 1, \ldots, n \) for some \(m \in \{0, 1, \ldots, n\} \), where \(q^U_m \) solves
\[
q^U_m = r \left(\sum_{j=1}^{m} k_j + (n - m - 1) q^U_m \right).
\]

Proof. See the Appendix. \(\blacksquare \)

Denote the capacity-constrained Cournot equilibrium given capacity allocation \((k_1, \ldots, k_n) \) by \((q^e_i(k_1, \ldots, k_n))_{i=1}^n \), and let the indirect profit function of firm \(i \) be
\[
\Pi_i(k_1, \ldots, k_n) = P \left(\sum_i q^e_i(k_1, \ldots, k_n) \right) q^e_i(k_1, \ldots, k_n) - c(q^e_i(k_1, \ldots, k_n)).
\]

An interesting feature of our model is that the buyers’ (firms’) marginal valuations for an additional unit of capacity may not be monotonic in the amount of capacity that they receive. This can be seen, at the level of intuition, for two firms as follows. When firm 1 is relatively small (has little capacity, which is a binding constraint in the downstream Cournot competition) then the marginal value of an additional unit of capacity is positive but decreasing because expanding the firm’s production generates a positive yet decreasing marginal profit in the downstream market. However, if the firm is relatively large, so much so that its capacity constraint is slack while its opponent’s constraint is binding in the downstream Cournot game, then the marginal value of additional capacity is increasing. This is so because by buying more capacity the firm tightens the

\(^8\)Cave and Salant (1995) prove the existence and uniqueness of Cournot equilibrium with capacity constraints under constant unit costs.
other firm’s capacity constraint, and the returns on this activity are increasing for our firm.9 Therefore, the marginal value of capacity for firm i is U-shaped in the capacity of the firm, as shown in Figure 1.

2.3 Efficient Capacity Allocation

We assume that the first-period capacity allocation, (k_1, \ldots, k_n) with $\sum_i k_i = K$, is \textit{efficient for the industry} (or \textit{efficient}, for short), that is, it maximizes $\sum_i \Pi_i(k_1, \ldots, k_n)$. This means that each unit of capacity is allocated to the firm that values it the most. This definition of efficiency ignores the consumer surplus in the downstream market. Therefore, the resulting allocation is not \textit{socially efficient}.

Our motivation for studying capacity allocations that maximize the producers’ surplus is not normative. Instead, the assumption reflects the fact that in practice, when inputs are allocated among producers (either via an auction or bargaining among the firms) the consumers of the final good are not present,

9These verbal statements can be verified by direct calculation in the case of two firms.
and their interests are not represented.10 Such “efficient” allocation is the outcome if the sale of the K units of capacity is organized in an \emph{efficient auction} (where the participants are the firms that compete in the downstream industry), or if the allocation is determined via \textit{Coasian bargaining} among the firms.

It turns out that our main results in Section 3 do not depend on the details of the mechanism yielding the efficient capacity allocation. The exact payment rule will be important only when we compare \emph{net profits} (which include the cost of capacity) across firms in Section 4, so we defer discussion of the particular allocation mechanism until then. There, we argue that in our setup, either a Vickrey-Clarke-Groves (VCG-) auction or a uniform price auction would induce a capacity allocation that is efficient for the industry, and we carry out the calculations with each payment rule separately. Coasian bargaining over inputs between firms would also yield the efficient allocation, but we do not consider it there because it does not yield tight predictions as to the prices that firms will pay for their capacity.

3 Main Results

We now turn to the analysis of the equilibrium market structure in the model of Section 2, and show that it may be qualitatively different depending on the amount of capacity sold in the auction. If the total capacity that is auctioned off is relatively little then the firms behave symmetrically; while if it is large then the only equilibrium is asymmetric, in which exactly one firm ends up with excess capacity and produces a larger quantity, while the other firms produce less while being constrained by their insufficient capacities. In Section 3.1 we show that the “regime change” (from a symmetric to an asymmetric outcome) happens at a certain capacity threshold and makes the total production drop discontinuously as the total capacity increases. In Section 3.2 we discuss how the market structure in our model differs from the unconstrained Cournot outcome, monopoly, and the structure of a perfectly coordinated cartel. In Section 3.3,

10This observation originates in Borenstein (1988). More recently, Hoppe, Jehiel and Moldovanu (2006) point out that the objective when designing the efficient auction of an input (e.g., licences) should be the weighted sum of the consumer and producer surpluses in the downstream market, and note the difficulty of incorporating the consumer surplus in the auction design as consumers do not submit bids.
we extend the comparison to the case of an infinite number of firms competing for inputs.

3.1 Industry Structure in the Downstream Market

Interestingly, the qualitative results regarding the downstream market structure depend on the total available capacity, \(K \). If the total available capacity is relatively low then the efficient capacity allocation is symmetric, and all firms end up producing at their capacity constraints in the downstream market. However, if \(K \) is large—exceeding a threshold that is strictly lower than the total capacity needed to produce the symmetric, unconstrained Cournot output—then the industry structure becomes asymmetric. All but one firm gets the same, low capacity and operates at full capacity, while one firm gets the remaining capacity (which is a bigger share of the total than the share of any other firm), and operates strictly within its capacity constraint.

As a preparation for stating the results formally, we first describe the asymmetric industry structure that prevails when \(K \) is sufficiently large. In the efficient capacity auction, each “small” firm buys a capacity \(k_1 = \ldots = k_{n-1} = k^* \), while the “large” firm receives the rest, \(k_n = K - (n-1)k^* \). The capacity level of each of the small firms, \(k^* \), maximizes

\[
P((n-1)k + r((n-1)k)) [(n-1)k + r((n-1)k)] \\
-(n-1)c(k) - c(r((n-1)k)). \tag{6}
\]

This is the total industry profit given that \((n-1) \) firms produce \(k \) and one firm produces the unconstrained best reply, \(r((n-1)k) \). The optimal level of \(k^* \) is characterized by the first-order condition of the maximization,

\[
[P'(Q^*)Q^* + P(Q^*)] [1 + r'((n-1)k^*)] \\
= c'(k^*) + r'((n-1)k^*)c'(r((n-1)k^*)). \tag{7}
\]

where \(Q^* = (n-1)k^* + r((n-1)k^*) \). Note that \(k^* \) does not vary with \(K \).

The following lemma states that if at least one firm is allocated excess capacity in the efficient auction then the capacity allocation must be the asymmetric one described above. We will later see that a sufficient condition for there be-
ing at least one firm with slack capacity is that the total capacity exceed the amount needed for producing the unconstrained Cournot equilibrium outcome, i.e., \(K > nq^* \). In the statement and proof of the lemma recall that the firms’ indices are ordered so that \(k_1 \leq k_2 \leq \ldots \leq k_n \).

Lemma 1 Suppose that \((k_1, \ldots, k_n)\) is the equilibrium capacity allocation in our game. If at least one firm’s capacity constraint is slack, i.e., \(k_n > q^*_n(k_1, \ldots, k_n) \), then \(k_1 = \ldots = k_{n-1} = k^* \) and \(k_n = K - (n - 1)k^* \).

Proof. See the Appendix. ■

The result of Lemma 1 is remarkable because it pins down the industry structure in our model whenever there is any slack capacity in the downstream market. Note that the asymmetric allocation of capacities \((k_1 = \ldots = k_{n-1} = k^*, k_n = K - (n - 1)k^*)\) and the corresponding asymmetric production \((q^*_1 = \ldots = q^*_{n-1} = k^*, q^*_n = r((n - 1)k^*))\) do not depend on the total amount of available capacity, \(K \). Observe that in this outcome, the small constrained firms indeed produce less than the unconstrained big firm as \(k^* < r((n - 1)k^*) \).

The only possibility that we have not considered is that no firm has slack capacity in the Cournot game that follows the efficient capacity auction. In this case, since the production technologies are symmetric and exhibit strictly decreasing returns, the efficient capacity allocation must be symmetric. (By distributing the total capacity \(K \), we essentially distribute a fixed total production among the firms because all capacity is fully used. The most efficient way to produce a fixed quantity is by spreading it evenly across the firms.)

In summary, the efficient capacity allocation is either asymmetric with exactly one firm receiving excess capacity and the others all receiving \(k^* \), or symmetric with all capacities binding in the downstream market. Note that the asymmetric outcome can arise as the solution only when it is feasible, that is, when \(K \geq Q^* \equiv (n - 1)k^* + r((n - 1)k^*) \). If \(K < Q^* \) then we know the efficient capacity allocation is symmetric, \(k_i = K/n \) for all \(i \).

The following proposition states the main result of this subsection: There exists a threshold level of total capacity, \(\hat{K} \), such that the efficient capacity allocation is symmetric for \(K < \hat{K} \) and asymmetric for \(K > \hat{K} \). The threshold \(\hat{K} \) falls strictly in between \(Q^* \) and \(nq^* \).
Proposition 2 Define \hat{K} such that

$$P(\hat{K})\hat{K} - nc(\hat{K}/n) = P(Q^*)Q^* - (n-1)c(k^*) - c(r((n-1)k^*)), \tag{8}$$

where k^* satisfies (7) with $Q^* = (n-1)k^* + r((n-1)k^*)$.

(a) If $K < \hat{K}$ then the efficient capacity allocation is symmetric, that is, each firm receives capacity K/n.

(b) If $K > \hat{K}$ then the efficient capacity allocation is such that all but one firm gets capacity $k^* < q^*$, while exactly one firm gets capacity $K - (n-1)k^*$.

Proof. We already know that the efficient capacity allocation is either symmetric, where $k_i = K/n$ for all i and all capacity constraints bind, or asymmetric as in Lemma 1, where $k_i = k^*$ for $i < n$ and $k_n = K - (n-1)k^*$. Note that the former allocation is the efficient one when the latter is not feasible, that is, $K \leq Q^*$.

Recall that we say that the capacity allocation is efficient when it maximizes the total industry profit in the capacity-constrained Cournot game. In the downstream market following the symmetric capacity allocation the total industry profit is $P(K)K - nc(K/n)$, which is strictly concave in K. Moreover,

$$P(Q^*)Q^* - nc(Q^*/n) > P(Q^*)Q^* - (n-1)c(k^*) - c(r((n-1)k^*)) \tag{9}$$

because c is strictly convex and $k^* < Q^*/n < r((n-1)k^*)$. On the other hand, if the total capacity equals the total output in the unconstrained Cournot equilibrium, $K = nq^*$, then from the proof of Lemma 1 we know that the efficient allocation is the asymmetric one (where $k_1 = \ldots = k_{n-1} = k^*$), hence

$$P(nq^*)nq^* - nc(q^*) < P(Q^*)Q^* - (n-1)c(k^*) - c(r((n-1)k^*)�P(nq^*)nq^* - nc(q^*) < P(Q^*)Q^* - (n-1)c(k^*) - c(r((n-1)k^*))�$$

Therefore, there exists $\hat{K} \in (Q^*, nq^*)$ such that if $K > \hat{K}$, the asymmetric allocation is efficient, while if $K < \hat{K}$, the symmetric allocation is efficient. At $K = \hat{K}$, the two allocations generate the same industry profits, that is, \hat{K} is defined by (8). □

An intriguing consequence of Proposition 2 is that the capacities of the firms and the total output produced in the downstream market change discontinuously
as a function of the total available capacity at $K = \hat{K}$. In particular, the capacities of the small firms and the total output fall by discrete amounts at $K = \hat{K}$. This is so because in the asymmetric solution (which is valid for all $K \geq \hat{K}$) the small firms’ capacities are k^* each and the total production is Q^*, while in the symmetric solution at $K = \hat{K}$, each firm has capacity \hat{K}/n and the total production is \hat{K}. However, we know that $Q^* < \hat{K}$, hence the capacities and the output jump at $K = \hat{K}$. We depict the capacity allocation and the resulting total industry production as a function of K in Figure 2.

![Figure 2: Capacities and total downstream production as a function of K](image)

The most important prediction that follows from Proposition 2 is that the total surplus (social welfare) as a function of the available capacity is maximized at $K = \hat{K}$. The total surplus is just the sum of the firms’ profits and the consumer surplus in the downstream market (payments to the auctioneer cancel). The total surplus is continuous and strictly increasing for $K < \hat{K}$ because \hat{K} is allocated symmetrically (which is socially desirable), all capacity is fully used in production, and the total production is lower than the Cournot output ($K < \hat{K} < nq^*$). However, the total surplus falls discretely as K exceeds \hat{K}. This is because the firms’ total profit is continuous at $K = \hat{K}$ by equation (8), but the consumer surplus falls discontinuously together with the total output.
in the downstream market. (The total surplus stays constant for all $K > \hat{K}$.) The policy consequence is that a social planner should restrict the quantity sold in the capacity auction to \hat{K} whenever K exceeds \hat{K}.

3.2 Comparison with Benchmarks

Now we turn to the comparison of the industry structure in our model to certain benchmarks: (i) the symmetric unconstrained Cournot outcome, (ii) the monopoly, and (iii) the perfectly coordinated collusive cartel. We also discuss the limiting case of the model as the cost function becomes affine (constant returns to scale).

First, by symmetry, $r' \in (-1, 0)$, and the fact that firms 1 through $n - 1$ are capacity constrained while firm n is not, it follows that

$$q_1^e = k^* < q^* < r((n - 1)k^*) = q_n^e.$$

The small firms each produce less than the per-firm Cournot output while the unconstrained firm produces more than that.

Second, we claim that $k^* > 0$, that is, the outcome of our model always differs from that of a monopoly. To see this, differentiate (6), the total industry profit in the asymmetric solution, in k to get

$$(n-1) \left\{ (1 + r'((n-1)k)) [P'(Q) Q + P(Q)] - c'(k) - r'((n-1)k)c'(r((n-1)k)) \right\},$$

where $Q = (n-1)k + r((n-1)k)$. For $k = 0$ and $n < \infty$, this simplifies to

$$(n-1) \left\{ [P'(Q^M)Q^M + P(Q^M)] (1 + r'(0)) - c'(0) - r'(0)c'(Q^M) \right\} = (n-1) \left[c'(Q^M) - c'(0) \right],$$

where $Q^M \equiv r(0)$ is the monopoly output, and on the second line the first-order condition of profit maximization by a monopoly, equation (4), is used. Since $c'(Q^M) > c'(0)$ by the strict convexity of c, the total industry profit is strictly increasing at $k = 0$. Hence $k^* > 0$.

Third, the outcome of our model is different from that of a collusive cartel unless $K = Q^C$ where Q^C is given by equation (5). This is so because our outcome is asymmetric for $K > \hat{K}$ (hence it cannot coincide with that of the cartel,
which is symmetric), and it is symmetric but the total downstream production equals \(K \) (not \(Q^C \)) for \(K < \hat{K} \).

Finally, it may be instructive to consider a limiting case of our model, when the production technology exhibits constant returns, that is, \(c \) is affine. While this case is ruled out by our assumption that \(c \) is strictly convex—which has been used in the proof of Lemma 1, for example—it is easy to check that Proposition 1 goes through with constant marginal costs as well. Therefore, for any capacity allocation, there exists a unique equilibrium in the follow-up Cournot game.

It is interesting to note, by comparing equations (4) and (5), that when \(c \) is constant, the monopoly and cartel outputs are equal, \(Q^M = Q^C \).

When \(c \) is affine, the efficient allocation of capacities depends on the total available capacity as follows. If \(K \) is less than \(Q^M \) then all capacity allocations are efficient. To see this, note that firm \(i \)'s unconstrained best response to the other firms’ joint production is at least \(Q^M - Q_{-i} \) (this is so because the best response would be \(Q^M \) for \(Q_{-i} = 0 \) and \(r' > -1 \)). Since \(Q^M > K \) and \(Q_{-i} \leq \sum_{j \neq i} k_j \), the unconstrained best response is not feasible: \(Q^M - Q_{-i} > K - \sum_{j \neq i} k_j \equiv k_i \). Hence firm \(i \) maximizes its profit by producing \(k_i \). Since each firm operates at full capacity, the total industry output and profits are the same no matter how the capacities are allocated. Therefore, all allocations are equally efficient. On the other hand, if \(K \) is at least as large as \(Q^M \) then the efficient capacity allocation is such that one firm gets all the capacity. This follows because for any initial allocation of capacities, the production that maximizes the firms’ joint profits is \(Q^M \). However, if more than one firm is allocated a positive capacity then the joint production in the Cournot game exceeds \(Q^M \). The cartel’s profit is maximized by shutting down all firms but one. This is the outcome for \(K > \hat{K} = Q^M \), therefore, the outcome of our model is monopoly, which can be interpreted as perfect cartelization among the firms by appropriate allocation of inputs. This contrasts with the case when marginal costs are increasing, where firms cannot achieve perfect cartelization through input allocation, but must trade-off productive efficiency against restraining output.
3.3 Market Structure with an Infinite Number of Firms

Our preceding analysis of the market structure is valid for any finite number of firms. In this subsection, we investigate what happens to the market structure as the number of firms becomes infinitely large. In particular, we are interested in knowing whether the market structure of our model collapses into monopoly, perfect cartelization, or perhaps perfect competition, in the limit as $n \to \infty$.

If the marginal cost is constant between zero and Q^M, then obviously, for all finite n and in the limit as $n \to \infty$, the outcome of our model is monopoly, which can be interpreted as a perfectly coordinated cartel. Therefore, in what follows, we again do not consider this special limiting case of the model.

In the analysis of the prevailing market structure with an infinite number of firms we will assume that an infinite amount of good can only be sold at zero price, and that the marginal cost of producing the first unit is positive. These two assumptions ensure that as $n \to \infty$, the unconstrained Cournot equilibrium converges to “perfect competition” in the sense that the per-firm production converges to zero, and the total output converges to a quantity where the market’s willingness to pay equals the marginal cost of any single infinitesimal firm. To see this, recall that the per-firm output in the unconstrained Cournot equilibrium satisfies $P'(nq^*)q^* + P(nq^*) = c'(q^*)$. As $n \to \infty$, q^* has to go to zero, otherwise $\lim_{n \to \infty} P(nq^*) = 0$, and $\lim_{n \to \infty} P'(nq^*)q^* \leq 0 < \lim_{n \to \infty} c'(q^*)$ yields a contradiction. If $q^* \to 0$ then $\lim_{n \to \infty} P(nq^*) = c'(0)$. We will continue to assume that there is sufficient total capacity to produce the unconstrained Cournot output, that is, $\lim_{n \to \infty} nq^* < K$.

Proposition 3 Suppose that $\lim_{Q \to \infty} P(Q) = 0$, $0 < c'(0) < c'(Q^M)$, and that $\lim_{n \to \infty} nq^* < K$. In our model, as $n \to \infty$, k^* converges to zero, however, $(n - 1)k^*$ tends to a positive number which is less than the limit of the total industry production. The market structure remains different from monopoly, unconstrained Cournot competition, and perfect collusion even as $n \to \infty$.

Proof. Under these assumptions, the per-firm Cournot output converges to zero as the number of firms goes to infinity. Since k^* is less than q^* for any given n, it must also converge to zero.

We claim that $(n - 1)k^*$ cannot converge to zero as $n \to \infty$. If it did then
lim_{n \to \infty} r((n - 1)k^*) = Q^M. By equation (4),

\[
[P'(Q^M)Q^M + P(Q^M)] [1 + r'(0)] = c'(Q^M) [1 + r'(0)] \\
> c'(0) + r'(0)c'(Q^M),
\]

where \(c'(0) < c'(Q^M) \) is used on the second line. The strict inequality contradicts (7), the first-order condition characterizing \(k^* \), for \(n \) sufficiently large.

Finally, we claim that if the total industry production converges to \(\bar{Q}^* \) as \(n \) goes to infinity then \(\lim_{n \to \infty} (n - 1)k^* < \bar{Q}^* \). In other words, the output of the unconstrained firm does not shrink to zero as the number of firms grows large. (Its output is greater than \(q^* \) for any finite \(n \), but \(q^* \) goes to zero as \(n \) goes to infinity.) Suppose towards contradiction that \(r(\bar{Q}^*) = 0 \). By the definition of the best-response function, equation (3), \(P(\bar{Q}^*) = c'(0) \). This contradicts the first-order condition that defines \(k^* \) for \(n \) sufficiently large, because as \(n \to \infty \), by (7), \(P'(\bar{Q}^*)\bar{Q}^* + P(\bar{Q}^*) = c'(0) \), and hence \(P(\bar{Q}^*) > c'(0) \). ■

4 Tobin’s Q, Firm Size, and Demand Cycles

In this section we derive a testable prediction on the relationship between firm size and Tobin’s \(Q \): we show that the two are negatively related. Tobin’s \(Q \) is defined as the ratio of the firm’s market value to its book value; in our model, \(Q \) equals the firm’s downstream profit divided by the cost of capacity. In order to compute this ratio—in particular, the cost of capacity— we exhibit in Section 4.1 two auction mechanisms that result in a capacity allocation that is efficient for the industry. These auctions are the Vickrey-Clarke-Groves mechanism and the uniform price share auction. In Sections 4.2 and 4.3, we show that the payment schemes corresponding to these auctions (the Vickrey payments and the equilibrium price in the uniform-price auction, respectively) indeed imply that Tobin’s \(Q \) and firm size are negatively related. Then, at the end of the section, we investigate the comparative statics of our model with respect to demand fluctuations. In particular, we show that a small slump in demand may lead to a relatively large drop in the downstream production, and that the industry becomes more asymmetrical and concentrated during a contraction than it is during a demand-driven expansion.
4.1 Payment Rules in the Capacity Market

In the context of our model, a *Vickrey-Clarke-Groves auction* with bids that are contingent on the entire allocation constitutes an efficient auction. This mechanism works as follows. Participants are requested to submit their monetary valuations for all possible allocations of the goods. The auctioneer chooses the allocation that maximizes the sum of the buyers’ reported valuations. Then, each buyer pays the difference between the other buyers’ total valuation in the hypothetical case that the goods were allocated efficiently among them (i.e., excluding him) and in the allocation actually selected by the auctioneer. The rules induce all participants to submit their valuations for every allocation honestly, and the outcome of the auction is efficient.\(^{11}\)

For future reference, we introduce notation for the capacity allocation and the payments in the VCG auction. Suppose that the valuation submitted for allocation \((k_1, \ldots, k_n)\) by firm \(i\) is \(b_i(k_1, \ldots, k_n)\). In the VCG auction, the auctioneer determines the allocation that maximizes \(\sum_{i=1}^n b_i(k_1, \ldots, k_n)\). Denote this allocation by \((k_1^*, \ldots, k_n^*)\). The price paid by firm \(i\), also called the *Vickrey payment*, is calculated as

\[
\max \left\{ \sum_{j \neq i} b_j(k_1, \ldots, k_n) \ \bigg| \sum_{j \neq i} k_j = K \right\} - \sum_{j \neq i} b_j(k_1^*, \ldots, k_n^*). \quad (10)
\]

It is routine to check that the above rules induce firm \(i\) to submit \(b_i(k_1, \ldots, k_n) = \Pi_i(k_1, \ldots, k_n)\), i.e., all firms bid honestly. Each firm that gets something in the efficient capacity allocation pays a positive price. Finally, each firm obtains a non-negative payoff from participation. These results are all established in Krishna (2002), Chapter 5.3.

There are other auction forms—simpler and more widely used in practice—that also yield an efficient capacity allocation in the context of our model. In particular, the *uniform-price share auction* (first analyzed by Wilson (1979)) is one such mechanism. In the uniform-price share auction for \(K\) units of capacity each firm \(i\) is required to submit an inverse demand schedule, \(p_i(k_i), k_i \in [0, K]\), which specifies the highest unit price firm \(i\) is willing to pay in exchange for \(k_i\) units of capacity. The auctioneer aggregates the demands and computes a market clearing price. A price level, say \(p^*\), is called market clearing if there

\(^{11}\)See Krishna (2002), Chapter 5.3 for a more complete discussion.
exists a capacity vector \((k_1, \ldots, k_n)\) such that \(\sum_i k_i = K\) and \(p_i(k_i) = p^*\) for all \(i\). Each firm \(i\) is then required to buy \(k_i\) units of capacity at unit price \(p^*\).

Proposition 4 There exists an equilibrium in the uniform-price share auction that implements the efficient capacity allocation.

Proof. See the Appendix. ■

It is well known that the uniform price share auction exhibits multiple equilibria, as far as the allocation of goods and the unit price are concerned (see Wilson (1979)). A straightforward argument as to why we would expect the capacity allocation \((k^*_1, \ldots, k^*_n)\) to emerge as the focal equilibrium is that this allocation is efficient, that is, it maximizes the firms’ joint profits. As remarked above, Coasian bargaining between firms could also implement the efficient capacity allocation, but since it does not generate a clear prediction for the amount that firms will pay for their capacity, we do not consider it here.

4.2 Tobin’s Q and Firm Size under Vickrey Payments

Suppose that each firm is required to make the so-called Vickrey payments in the capacity auction, as defined in equation (10).

Denote \(\Pi^{eff}_{-1}\) the total profit of a subset of \(n-1\) firms when the total capacity \(K\) is allocated only among them (i.e., excluding one firm) in a VCG auction. The allocation that the VCG auction implements for \(n-1\) firms is \(k_1 = \ldots k_{n-2} = k^*_{-1}\) and \(k_n = K - (n-1)k^*_{-1}\) where \(k^*_{-1}\) solves

\[
[P'(Q^*_{-1})Q^*_{-1} + P(Q^*_{-1})] [1 + r'(n-2)k^*_{-1}]]
\]

\[
c'(k^*_{-1}) + r'(n-2)k^*_{-1}c'(r((n-2)k^*_{-1})),
\]

with \(Q^*_{-1} = (n-2)k^*_{-1}\). This condition is just (7) for \(n-1\) firms instead of \(n\).

Denote the profit of firm \(i = 1, \ldots, n\) in the allocation implemented by the VCG auction when all firms participate by \(\Pi^*_i\). Firms \(1, \ldots, n-1\) are small firms (with capacities \(k^*\) each), while firm \(n\) is the large firm (with capacity \(K - (n-1)k^*\)).

The Vickrey payment that a small firm is required to make in the VCG auction is

\[
V_1(k^*) = \Pi^{eff}_{-1} - (n-2)\Pi^*_1 - \Pi^*_n
\]
while the payment that the large firm makes is

\[V_n(K - (n-1)k^*) = \Pi_{-1}^{eff} - (n-1)\Pi_1^*. \]

Tobin’s Q is defined as the ratio of the firm’s market value (here, its downstream profit) divided by its book value (here, book value of the capacity, i.e., the Vickrey payment). That is,

\[Q_i = \frac{\Pi_i^*}{V_i^*}. \]

Proposition 5 If the firms are required to make Vickrey payments in the capacity auction then firm size and Tobin’s Q are negatively related, that is,

\[Q_1 > Q_n. \]

Proof. \(Q_1 > Q_n \) is equivalent to

\[\frac{\Pi_1^*}{\Pi_n^{eff} - (n-2)\Pi_1^* - \Pi_n^*} > \frac{\Pi_n^*}{\Pi_{-1}^{eff} - (n-1)\Pi_1^*}. \]

Cross-multiplying and rearranging yields, equivalently,

\[\Pi_n^{2} + (n-2)\Pi_n^*\Pi_1^* - (n-1)\Pi_1^{2} > \Pi_n^*\Pi_{-1}^{eff} - \Pi_1^*\Pi_{-1}^{eff}. \]

Factoring out \((\Pi_n^* - \Pi_1^*)\) yields

\[(\Pi_n^* - \Pi_1^*)[\Pi_n^* + (n-1)\Pi_1^*] > (\Pi_n^* - \Pi_1^*)\Pi_{-1}^{eff}. \]

Since \(\Pi_n^* > \Pi_1^*\), this is equivalent to

\[\Pi_n^* + (n-1)\Pi_1^* > \Pi_{-1}^{eff}, \]

which holds because the VCG allocation is efficient for the firms.

4.3 Tobin’s Q and Firm Size under Uniform Price for Capacity

Now assume that the uniform equilibrium price of a unit of capacity is \(p^* > 0\). Let \(\chi_i\) denote firm \(i\)’s Tobin’s Q after having been allocated capacity \(k_i\); that
is,
\[\chi_i \equiv \frac{P(Q)q_i - c(q_i)}{p^*k_i}, \]
where the numerator is firm \(i \)'s market value and the denominator firm \(i \)'s book value.

Proposition 6 Assume that \(K > \hat{K} \) so that the efficient auction induces the asymmetric allocation \((k^*, ..., k^*, K - (n - 1)k^*)\) of capacity. In equilibrium, \(\chi_1 = ... = \chi_{n-1} > \chi_n \), and so there is a negative relationship between firm size (as measured by either book or market value, capacity, output, or sales) and Tobin’s \(Q \).

Proof. Note first that if \(K > \hat{K} \), then one firm, say firm \(n \), is allocated capacity \(K - (n - 1)k^* \) through the efficient auction, while each other firms is allocated capacity \(k^* < K - (n - 1)k^* \). Firms 1 to \(n - 1 \) will then face a binding capacity constraint in the output market, producing each an output of \(k^* \), while the large firm \(n \) will produce \(r((n - 1)k^*) \in (k^*, K - (n - 1)k^*) \).

Hence, by any measure of firm size \(s_i \) (capacity, book or market value, sales, output), \(s_1 = ... = s_{n-1} < s_n \).

It remains to show that \(\chi_1 = ... = \chi_{n-1} > \chi_n \). For \(i \in \{1, ..., n-1\} \), we have
\[\chi_i = \frac{P((n-1)k^* + r((n-1)k^*))k^* - c(k^*)}{p^*k^*}, \]
and so \(\chi_1 = ... = \chi_{n-1} \). For the large firm \(n \), Tobin’s \(Q \) is
\[\chi_n = \frac{P((n-1)k^* + r((n-1)k^*))r((n-1)k^*) - c(r((n-1)k^*)))}{p^*[K - (n - 1)k^*]}. \]

We thus have \(\chi_1 > \chi_n \) if and only if
\[P(Q*) - \frac{c(k^*)}{k^*} > P(Q*) \frac{r((n-1)k^*)}{K - (n - 1)k^*} - \frac{c(r((n-1)k^*)))}{K - (n - 1)k^*}. \]
where $Q^* = (n - 1)k^* + r((n - 1)k^*)$ is industry output. To see that this inequality does indeed hold, note that

$$P(Q^*) - \frac{c(k^*)}{k^*} > P(Q^*) - \frac{c(r((n - 1)k^*))}{r((n - 1)k^*)} > P(Q^*) \frac{r((n - 1)k^*)}{K - (n - 1)k^*} - \frac{c(r((n - 1)k^*))}{K - (n - 1)k^*},$$

where the first inequality follows from $r((n - 1)k^*) > k^*$ and the strict convexity of c, and the second inequality from $r((n - 1)k^*) < K - (n - 1)k^*$. Hence, $\chi_1 > \chi_0$. ■

This prediction is consistent with the empirical evidence provided in Eeckhout and Jovanovic (2002). Using Compustat data, they show that (i) the market-to-book ratio (Tobin’s Q) is lower for firms with larger book value, and (ii) the market-to-book ratio is decreasing in firm sales.

4.4 Output and Market Structure Over the Business Cycle

In this subsection, we consider the comparative statics of our model with respect to the level of demand. We show that if K is just below the threshold level of capacity \bar{K}, then a small slump in demand will be reinforced by a large contraction of output. Further, the change in output is asymmetric: all but one firm downsize, relinquishing their capacity to one large firm, which will then exhibit a low Tobin’s Q. If on the other hand, K is just above \bar{K}, then a small increase in demand will induce a large expansion of output. But, again, the expansion of output is asymmetric: the small (high-Q) firms will grow at the expense of the large (low-Q) firm. This result, stated formally in proposition 7 below, has potentially important implications for the economic effects of business cycles as it shows that an “efficient” allocation of capacity will result in a magnification of the business cycle. It also implies that industrial concentration measures should tend to rise in recession periods, and that mark-ups will be counter-cyclical.\footnote{This latter implication is consistent with the available empirical evidence: see Rotemberg and Woodford (1999) for a survey. Interestingly, it seems to be the case that the counter-cyclicality of mark-ups is more pronounced in more highly concentrated industries (see Barro...}
Let $P(Q; \theta)$ denote inverse demand if the state of demand is given by $\theta \geq 0$. Conditional on θ, we make the same assumptions on the shape of inverse demand as in section 2 above. Further, we assume that an increase θ will be associated with (i) an increase in demand, $\frac{\partial P(Q; \theta)}{\partial \theta} > 0$ for all $Q > 0$, $\lim_{\theta \to 0} P(Q; \theta)Q/n < c'(Q/n)$ for $Q > 0$; and (ii) less price-elastic demand, $\frac{\partial^2 P(Q; \theta)}{\partial Q \partial \theta} \geq 0$ for all $Q > 0$. These assumptions subsume the special case where an increase in the level of demand means a replication of the population of consumers, leaving consumers’ tastes and incomes unchanged, and so inverse demand can be written as $P(Q; \theta) \equiv \tilde{P}(Q/\theta)$ and satisfies $\tilde{P}'(\cdot) < 0$.

Proposition 7 There exists a threshold demand level $\hat{\theta}(K)$ such that $\hat{K}(\theta) < K$ if and only if $\theta < \hat{\theta}(K)$ and $\hat{K}(\theta) > K$ if and only if $\theta > \hat{\theta}(K)$. That is, if demand is low, $\theta < \hat{\theta}(K)$, the efficient auction induces the asymmetric capacity allocation $(k^*(\theta), ..., k^*(\theta), K - k^*(\theta))$, while if demand is high, the efficient auction induces the symmetric capacity allocation $(K/n, ..., K/n)$.

Proof. See the Appendix. ■

An immediate implication of the proposition is that in a demand slump ($\theta < \hat{\theta}$) the industry structure is more asymmetric than during a boom ($\theta > \hat{\theta}$).

5 Differentiated Bertrand Competition

In this section we show that our main results extend to the case where the downstream industry is modeled as differentiated-products Bertrand competition, and firms compete in strategic complements instead of substitutes. The purpose of analyzing this extension is to demonstrate that our results are not due to some particular property of the Cournot model.

Assume that there are two firms that simultaneously set prices, denoted by p_i ($i = 1, 2$). The demands for their goods are $q_1 = Q(p_1, p_2)$ and $q_2 = Q(p_2, p_1)$, respectively, where Q is decreasing in its first and increasing in its...
second argument. The firms have capacity constraints \(k_i \) \((i = 1, 2)\), which are determined in the first stage of the game.

We model differentiated Bertrand competition subject to capacity constraints as in Maggi (1996). If firm \(i \) faces a demand \(q_i \leq k_i \) then its cost is \(c(q_i) \); if \(q_i > k_i \) then its cost is \(c(q_i) + \theta(q_i - k_i) \), where \(c \) is a strictly increasing function and \(\theta \) is a large positive number. Verbally, this means that the firms (constrained or not) always serve the entire demand they face; however, producing beyond their respective capacity constraints carries a drastic monetary penalty. This assumption allows us to ignore the issue of *rationing* when demand exceeds capacity.\(^{13}\) Therefore, we can focus on the main qualitative difference between Bertrand and Cournot models: strategic complements vs. strategic substitutes.

We assume that for all capacity allocations \((k_1, k_2)\) with \(k_1 + k_2 = K \), there exist prices \((p_1, p_2)\) such that \(Q(p_1, p_2) = k_1 \) and \(Q(p_2, p_1) = k_2 \). In order to ensure that the price vector that gives rise to demands that equal the capacities is unique, we assume that for all \((p_1, p_2)\), \(Q_1(p_1, p_2) + Q_2(p_1, p_2) < 0 \), where \(Q_i \) denotes \(\partial Q_i / \partial p_i \) for \(i = 1, 2 \). As a result of this assumption, firm 1’s “iso-demand curve,” \(p_2(p_1) \), defined implicitly by \(Q(p_1, p_2(p_1)) \equiv k_1 \), has a slope greater than one: \(p'_2 = -Q_1/Q_2 > 1 \). Therefore, the iso-demand curves intersect only once, hence the point \((p_1, p_2)\) where \(Q(p_1, p_2) = k_1 \) and \(Q(p_2, p_1) = k_2 \) is unique.

Firm 1’s profit function when its capacity constraint is slack is \(\pi(p_1, p_2) = p_1 Q(p_1, p_2) - c(Q(p_1, p_2)) \). Assume that \(\pi \) is strictly concave in \(p_1 \), and define firm 1’s unconstrained reaction function as \(r(p_2) = \text{arg max}_{p_1} \pi(p_1, p_2) \). By symmetry, \(r \) is the unconstrained reaction function of firm 2 as well. Assume that \(r \) is differentiable with \(r' \in (0, 1) \), which implies that there exists a unique equilibrium without capacity constraints, where both firms set \(p^B = r(p^B) \). These assumptions could be expressed in terms of the true fundamentals (the functions \(Q \) and \(c \)), but, in the interest of brevity, we keep them in this form.\(^{14}\) Denote the per-firm equilibrium output in the unconstrained differentiated Bertrand model by \(q^B = Q(p^B, p^B) \).

If \(Q(r(p_2), p_2) > k_1 \), that is, firm 1’s best response to firm 2’s price yields a demand for firm 1’s good that exceeds its capacity, then by the concavity of

\(^{13}\)Rationing naturally does not arise in the Cournot model with capacity constraints. Using this model, we essentially assume it away in the Bertrand model.

\(^{14}\)The reader may consult chapter 6.2 of Vives (2000) for details.
π(p₁,p₂), the optimal (constrained) response for firm 1 is to set p₁ > r(p₂) such that Q(p₁,p₂) = k₁. By symmetry, the same is true for firm 2: In case its unconstrained best response is not feasible, Q(r(p₁),p₁) > k₂, then its constrained best response to p₁ is p₂ > r(p₁) such that Q(p₂,p₁) = k₂.

Our first result is that for all initial capacity allocations, there is an equilibrium in the ensuing differentiated Bertrand model with capacity constraints.

Lemma 2 For all k₁, k₂ with 0 < k₁ ≤ k₂ and k₁ + k₂ = K, there exists an equilibrium in the capacity-constrained Bertrand game.

Proof. See the Appendix. ■

The next issue is to determine the capacity allocation that maximizes the sum of the firms’ profits subject to the constraint that for any initial capacity allocation (k₁, k₂) the equilibrium described in the previous lemma is played.

If the capacity allocation leads to a downstream equilibrium in which both firms are constrained then their joint profit is

\[p₁^*Q(p₁^*,p₂^*) - c(Q(p₁^*,p₂^*)) + p₂^*Q(p₂^*,p₁^*) - c(Q(p₂^*,p₁^*)) \]

where \((p₁^*,p₂^*)\) is such that \(k₁ = Q(p₁^*,p₂^*)\) and \(k₂ = Q(p₂^*,p₁^*)\), as in Case 2 of the lemma. Change variables so that \(p₁^* = P₁(k₁,k₂)\) and \(p₂^* = P₂(k₁,k₂)\) and rewrite the joint profit as

\[P₁(k₁,k₂)k₁ - c(k₁) + P₂(k₁,k₂)k₂ - c(k₂). \]

(11)

We will assume that this expression is maximized in \(k₁\) and \(k₂ \equiv K - k₁\) at \(k₁ = k₂ = K/2\). While (11) is symmetric in \(k₁\) and \(k₂\), this amounts to an additional (though mild) assumption. The assumption is made in the spirit of the original (Cournot) model, where the firms’ joint profit maximizing quantity choice is symmetric as well.

Let \(K^C\) denote the joint production of a “cartel,” that is, the value of \(K\) that maximizes \(|P₁(K/2,K/2) + P₂(K/2,K/2)|K/2 - 2c(K/2)\). By definition (and the assumption in the previous paragraph), if the total capacity is \(K^C\), then the optimal capacity allocation is \(k₁ = k₂ = K^C/2\).

The symmetric allocation can be optimal only for \(K\) not exceeding the joint production in the unconstrained Bertrand equilibrium, \(2q^B\). We now argue
that even at $K = 2q^B$ it is strictly better for the firms to allocate the total capacity asymmetrically, so that the smaller firm (denoted by firm 1) becomes capacity constrained while the other firm becomes unconstrained in the ensuing equilibrium.

Suppose towards contradiction that each firm has capacity q^B and plays the unconstrained equilibrium by setting price p^B. Recall that $q^B = Q(p^B, r(p^B))$. Now reduce k_1 and increase k_2 by the same infinitesimal amount, $dk = [Q_1(p^B, p^B) + Q_2(p^B, p^B)r'(p^B)]dp$. Notice that by construction, firm 1 remains exactly capacity constrained if it increases its price by dp and firm 2 increases it by $r'(p^B)dp$. On the other hand, the same change in prices makes firm 2 unconstrained because the total demand decreases (as both prices go up) while the total capacity remains the same. Therefore, the resulting prices, $p^B + dp$ and $r(p^B + dp)$, form an equilibrium where firm 1 is constrained and firm 2 is unconstrained. We just need to show that the joint profit is higher in the new equilibrium. The change in the joint profit can be written as

$$\frac{d}{dp_1} \left[\pi(p_1, r(p_1)) + \pi(r(p_1), p_1) \right]_{p_1=p^B} = \left[\pi_1(p^B, p^B) + \pi_2(p^B, p^B) \right] \left[1 + r'(p^B) \right],$$

where π_j denotes the derivative with respect to the jth argument. But this expression is positive because $\pi_1(p^B, p^B) = 0$ by the equilibrium condition, while $\pi_2(p^B, p^B) > 0$ and $r' > 0$.

We have so far established that for a total capacity level of $K = K^C$ the optimal capacity allocation is symmetric, while for $K = 2q^B$, the optimal allocation is asymmetric. By continuity (i.e., since the problem of optimal capacity allocation is continuous in K), there must exist an intermediate value of K, call it \hat{K}, where the optimal capacity allocation changes from symmetric to asymmetric. At such K, the joint profit of the firms is the same from splitting \hat{K} equally and allocating it optimally in an asymmetric fashion. If the production technology exhibits strictly decreasing returns (i.e., c is strictly convex) then there is a discrete drop in the social surplus as K increases past \hat{K}. This is the exact same phenomenon that we found in the Cournot model. We summarize our findings regarding the differentiated Bertrand model in the following proposition.
Proposition 8 In the differentiated Bertrand model, for some (low) values of K the efficient capacity allocation is symmetric, while for some other (high) values of K it is asymmetric. There exists a threshold value $\hat{K} \in (K^C, 2q^B)$ where the efficient capacity allocation changes from symmetric to asymmetric. Around \hat{K}, a small increase in the total available capacity reduces the social surplus.

6 Conclusion and Directions for Further Research

In this paper we have examined the behaviour of an industry which requires a scarce input (“capacity”) which is in fixed supply, when the input is allocated through an efficient auction or other equivalent process, such as Coasian bargaining. After the input is allocated, firms compete subject to the capacity constraints imposed by their prior input purchases in a Cournot (or, in an extension differentiated Bertrand) game. We have shown that under these circumstances, firms with ex ante symmetric production technologies end up in either a symmetric or an asymmetric equilibrium, depending on whether the available amount of input is smaller or larger than a certain threshold, respectively. The asymmetric equilibrium features one large firm which hoards input, with all other firms relatively small and constrained by their input purchases: thus the input is allocated in a way which is productively inefficient. This implies that, around the capacity threshold, an increase in the amount of input available will, tighten rather than ease the input constraints which most firms face, and will leading to a drop in total output. It follows that trying to increase input availability can easily be a misguided policy measure in such markets; it might be better to change the method by which input is allocated.

In light of the finding that the “efficient capacity auction” yields an asymmetric and socially undesirable outcome in the downstream market, it is clearly important to know whether other auctions (which are not “efficient” from the perspective of the capacity buyers) would yield socially better outcomes. While future research is certainly required on this topic, we believe that dynamic auctions, where each unit of the capacity is auctioned off separately over time, may be good candidates for such mechanisms. Suppose, for example, that the total capacity to be sold is divided into small units (i.e., the K physical units are
divided to make T “units for sale”, where T may be much larger than K). At each point in time, $t = 1, \ldots, T$, one “unit” of capacity is sold at a second-price auction. This dynamic process is carried out fast enough so that discounting between periods can be assumed away.

At first glance, it may seem surprising that this dynamic auction does not yield the same “efficient” result as the VCG auction. In fact, one can show that if K is sufficiently large and the cost function exhibits constant returns to scale, then the dynamic auction proposed above is socially more desirable than the VCG auction.\(^{15}\)

Recall that under constant returns to scale, if K is sufficiently large (greater than the monopoly output in the downstream market), then the outcome of our model with an efficient capacity auction is monopoly—one firm gets all the capacity, and all the other firms get no capacity at all. If this were the case in the dynamic capacity auction as well then in the last period the large firm would have to outbid every single other firm for the last unit of capacity. As a result, the large firm would have to pay a price for this unit that equals the marginal value of one unit of capacity for a firm with zero capacity. The marginal value (or profit) of an additional unit capacity for a firm with zero capacity is quite high, but it decreases as the capacity of the small firm increases (at least locally, at zero initial capacity). Therefore, the large firm may find it more desirable to “give up” a unit of capacity earlier in the dynamic game, in order to “soften” the competition it will face for the last unit of capacity in the final period. Indeed, such a move is profitable for the large firm because its profit is “flat” in its capacity.\(^ {16}\) Therefore, the large firm will not attempt to buy up all the capacity in the dynamic auction. The resulting downstream output exceeds the monopoly output, hence the dynamic auction yields a socially more desirable outcome than the “efficient” VCG mechanism.

We showed that our yields several testable implications on the cross-sectional relationship between firm size and profitability (Tobin’s Q) and on the time se-

\(^{15}\)This is established in a model with constant returns technology by Krishna (1993). Dynamic auctions of capacity can lead to entry deterrence in an oligopoly, see Dana and Spier (2006).

\(^{16}\)As the large firm produces at the monopoly level, a small decrease in production has a second-order effect on its profit, while the reduction in the price of the last unit of capacity is of the first order.
ries behaviour of costs and mark-ups across the cycle which seem to be consistent with available evidence. In order to improve the realism of our model, it may be interesting and worthwhile to extend the model to allow for substitutability between the input obtained in the auction and other inputs. (In other words, to treat the upstream good as “capital” rather than “capacity” as we do currently.) The intuition gained from our analysis suggests that our main results should generalize to that setup. In particular, we would expect that the resulting input allocation is asymmetric and suffers from the same types of inefficiencies that we identified in our model.

Another direction for future research would be to explicitly incorporate upstream sellers (producers of the input or capacity used by the downstream firms) into the model. Our current model could easily be adapted to allow for a capacity supply curve (i.e., the supply could be made more elastic). However, by explicitly considering upstream sellers it would be possible to compare different contracting modes between the sellers and buyers of the upstream good (the input or capacity). This extension would make it possible to compare more formally centralized and decentralized input trading mechanisms.

7 Appendix: Omitted Proofs

Proof of Proposition 1. If the total industry production is Q and firm i’s production is q_i, then firm i’s marginal profit is

$$\frac{\partial \pi_i(q_i, Q-i)}{\partial q_i} \bigg|_{Q-i=Q-q_i} = P'(Q)q_i + P(Q) - c'(q_i).$$

(12)

This expression is strictly decreasing in q_i because $P' < 0$ and $c'' \geq 0$, and it becomes negative if q_i is sufficiently large. Therefore, in equilibrium, if the total production is Q and firm i’s capacity constraint is slack, then firm i produces a quantity $q^U(Q)$ such that

$$q^U(Q) = \min \{q_i \geq 0 \mid P'(Q)q_i + P(Q) - c'(q_i) \leq 0\}. \quad (13)$$

If firm i’s capacity constraint is less than $q^U(Q)$ then it produces k_i. Note that all firms whose capacity constraints are slack produce the same output, $q^U(Q)$. 32
The function $q^U(Q)$ is continuous, and by the Implicit Function Theorem its derivative is

$$\frac{dq^U(Q)}{dQ} = \frac{-P''(Q)q^U(Q) + P'(Q)}{P'(Q) - c''(q^U(Q))}.$$

If $q^U(Q) \leq Q$ then $P''(Q)q^U(Q) + P'(Q) < 0$ by assumption. This, combined with $P' < 0$ and $c'' \geq 0$, implies that $dq^U(Q)/dQ < 0$ whenever $q^U(Q) \leq Q$.

Define

$$h(Q) = \sum_{i=1}^{n} \min\{k_i, q^U(Q)\} - Q.$$

Clearly, $Q^* \in [0, K]$ and $h(Q^*) = 0$ if and only if Q^* is the total production in a capacity-constrained Cournot equilibrium.

We claim that there exists a unique $Q^* \in [0, K]$ that satisfies $h(Q^*) = 0$. To see this, first note that $q^U(0) > 0$ by equation (??), hence $h(0) > 0$ by equation (14). If $Q \geq K \equiv \sum_i k_i$ then equation (14) yields $h(Q) \leq 0$. Since $q^U(Q)$ is continuous, $h(Q)$ is continuous as well. Therefore, by the Intermediate Value Theorem, there exists $Q^* \in (0, K]$ such that $h(Q^*) = 0$. If $Q < K$ then, by (14), $h(Q) \leq 0$ implies that $q^U(Q) < k_i$ for some i, and therefore $q^U(Q) \leq Q$. As a result, $q^U(Q)$ is strictly decreasing, and so is $h(Q)$, for all $Q \in (Q^*, K)$. Since $h(Q^*) = 0$, we have $h(Q) < 0$ for all $Q \in (Q^*, K]$. Therefore, any $Q^* \in [0, K]$ such that $h(Q^*) = 0$ is unique. ■

Proof of Lemma 1. We will argue that if some firm or firms have excess capacity and (k_1, \ldots, k_n) differs from the proposed asymmetric capacity allocation, then there exists some perturbation that increases the total industry profit thereby contradicting the efficiency of (k_1, \ldots, k_n).

First, we show that under the hypothesis of the lemma, there is at least one firm whose capacity constraint is binding in the downstream market. Suppose towards contradiction that all firms are unconstrained. Then they each produce q^*, where $q^* < k_i$. Redistribute capacities so that for all $i < n$, $k_i = q^*$, and $k_n = K - (n-1)q^*$. This change does not affect the downstream equilibrium production of any firm. Then, carry out the following perturbation: Reduce the capacity of each firm except firm n by an infinitesimal amount, dq, and increase k_n by $(n-1)dq$. As a result, the total production changes: Firm n gains $dq_n = r'((n-1)q^*)(n-1) dq$, while the other firms lose a combined $dQ_{-n} = (n-1) dq$. Since $r' > -1$, the change in total production is negative,
that is, \(dq_n + dQ_{-n} < 0 \). The change in the total industry profit is,

\[
d\Pi = \frac{\partial \pi_n(q^*, (n-1)q^*)}{\partial q_n} dq_n + \frac{\partial \pi_n(q^*, (n-1)q^*)}{\partial Q_{-n}} dQ_{-n} + \sum_{i=1}^{n-1} \left[\frac{\partial \pi_i(q^*, (n-1)q^*)}{\partial q_i} dq_i + \frac{\partial \pi_i(q^*, (n-1)q^*)}{\partial Q_{-i}} \left(dq_n + \frac{n-2}{n-1} dQ_{-n} \right) \right].
\]

\(q^* \) is the unconstrained Cournot equilibrium production, therefore \(\frac{\partial \pi_i(q^*, (n-1)q^*)}{\partial q_i} = 0 \) for all \(i \). By symmetry,

\[
\frac{\partial \pi_i(q^*, (n-1)q^*)}{\partial Q_{-i}} = \frac{\partial \pi_j(q^*, (n-1)q^*)}{\partial Q_{-j}} \quad \text{for all} \quad i, j = 1, \ldots, n.
\]

Using these facts, the expression for \(d\Pi \) simplifies to

\[
d\Pi = \frac{\partial \pi_n(q^*, (n-1)q^*)}{\partial Q_{-n}} dQ_{-n} + \sum_{i=1}^{n-1} \frac{\partial \pi_i(q^*, (n-1)q^*)}{\partial Q_{-i}} \left(dq_n + \frac{n-2}{n-1} dQ_{-n} \right) = \frac{\partial \pi_n(q^*, (n-1)q^*)}{\partial Q_{-n}} (n-1) (dQ_{-n} + dq_n).
\]

By \(\frac{\partial \pi_n}{\partial Q_{-n}} < 0 \) and \(dq_n + dQ_{-n} < 0 \), the change in total industry profit is positive, that is, \(d\Pi > 0 \). The perturbation of capacities increases the firms’ total profit, hence the original distribution of capacities was not efficient, which is a contradiction.

For \(n = 2 \), the previous argument establishes that exactly one firm has excess capacity. We now prove that the same is true for \(n > 2 \) as well. Suppose towards contradiction that more than one firm has excess capacity, i.e., due to the way firms are indexed, \(q^e_{n-1}(k_1, \ldots, k_n) < k_{n-1} \). Note that the capacity of firm 1 is binding, therefore \(q^e_1(k_1, \ldots, k_n) = k_1 < q_{n-1} \). Redistribute all excess capacity from firms 2 through \(n-1 \) to firm \(n \); this obviously does not change the production levels. Denote the new capacity levels by \((\tilde{k}_1, \ldots, \tilde{k}_n) \). Now decrease \(\tilde{k}_{n-1} = q^e_{n-1}(k_1, \ldots, k_n) \) by \(dq \) and increase \(\tilde{k}_1 = k_1 \) by \(dq \). Since firm 1’s capacity is a binding constraint for its production, \(q^e_1 \) increases by \(dq \) as well. As a result, the total production of all firms is unchanged. However, as the cost functions are strictly convex and the distribution of production among the firms has become less asymmetrical (we have increased \(q^e_1 \), decreased \(q^e_{n-1} \), and \(q^e_1 < q^e_{n-1} \) at the initial capacity levels), the total industry profit increases.
original allocation of capacities was not maximizing the total industry profit, which is a contradiction.

We conclude that if the capacity auction is efficient and there is a firm with excess capacity in the downstream market then it is firm n (i.e., there can only be one firm with slack capacity). Due to symmetry, the allocation of capacities that maximizes the total downstream industry profit subject to the constraint that firm n best-responds to the joint production of the other firms is the same for firms 1 through $n-1$, that is, $k_1 = \ldots = k_{n-1} = k^*$. The capacity-constrained firms each produce k^*, while the unconstrained firm produces $r((n-1)k^*)$. The optimal capacity constraint, k^*, maximizes the total industry profit, (6).

Proof of Proposition 4. Pick a positive p^* such that $p^*k^*_i < \Pi_i(k^*_1, \ldots, k^*_n)$ for all i. Recall that $k^*_1 = \ldots = k^*_{n-1} = k^*$ and $k^*_n = K - (n-1)k^* > k^*$. We will define an equilibrium where, given the other $(n-1)$ firms’ equilibrium strategies (inverse demand schedules), each firm is indifferent to use any strategy in response, therefore they each use their proposed equilibrium strategy. In this equilibrium, firms $i = 1, \ldots, n-1$ submit the same schedule, $p^*_i(\cdot)$, while firm n submits $p^*_n(\cdot)$, and the induced allocation of capacity is (k^*_1, \ldots, k^*_n).

Denote $\Pi^*_i = \Pi_i(k^*_1, \ldots, k^*_n)$ for $i = 1, \ldots, n$. Let

$$p^*_i(k_1) = \frac{\Pi_1(k_1, \ldots, k_1, K - (n-1)k_1) - \Pi^*_n + p^*k^*_n}{K - (n-1)k_1}. \tag{15}$$

We claim that this inverse demand bid function makes firm n indifferent to submit any bid function. To see this, note that if firm n’s bid results in it getting capacity k_n then the other firms each receive capacity $k_1 = (K - k_n)/(n - 1)$, and the unit price of capacity becomes $p^*_1((K - k_n)/(n - 1))$. Using (15), firm n’s profit is

$$\Pi_1(k_1, \ldots, k_1, k_n) - p^*_1(k_1)k_n = \Pi^*_n - p^*k^*_n.$$

Therefore firm n is indeed indifferent between inducing any capacity k_n and k^*_n. Now we construct an inverse demand schedule for firm n that makes any other firm (say, firm $(n - 1)$) indifferent to submitting any demand schedule (given that the other $(n - 2)$ firms use p^*_1), and, together with p^*_1 defined in (15), induces the allocation (k^*_1, \ldots, k^*_n).
For all \(k_1 \leq K/(n - 2) \), define \(k_n(k_1) \) as the lowest non-negative number such that

\[
\Pi_{n-1}(k_1, \ldots, k_1, k_{n-1}, k_n) - p_1^*(k_1)k_{n-1} \leq \Pi_{n-1}^* - p^*k_{n-1}^*,
\]

where \(k_{n-1} \equiv K-k_n-(n-2)k_1 \). Such \(k_n(k_1) \) is well-defined because at \(k_n = K-(n-2)k_1 \), the left-hand side of (16) becomes zero, while the right-hand side is a positive constant, so (16) holds as a strict inequality. Note also that if \(k_n(k_1) \) is positive then (16) holds as an equality. Now let \(p_n^*(k_n(k_1)) = p_1^*(k_1) \). Defining \(p_n^* \) this way guarantees that when firms \(i = 1, \ldots, n-2 \) submit \(p_1^* \) and firm \(n \) submits \(p_n^* \), the best response of the remaining firm, firm \(n - 1 \), is to submit \(p_1^* \) as well. This is so because by submitting an inverse demand schedule, firm \(n-1 \) can induce any capacity allocation \((k_1, \ldots, k_1, k_{n-1}, k_n)\) where \(k_n = k_n(k_1) \) and the unit price of capacity is \(p_1^*(k_1) = p_n^*(k_n) \). In particular, if firm \(n-1 \) submits \(p_1^* \) then the induced allocation is \((k_1^*, \ldots, k_n^*) = (k^*, \ldots, k^*, K-(n-1)k^*) \) and the unit price is \(p^* = p_1^*(k^*) \). By (16), the net profit of firm \(n-1 \) is maximized by inducing exactly this allocation.

Proof of Lemma 2. If \(k_1 \geq qB \) then both firms are capable of producing the unconstrained Bertrand equilibrium output. It is immediate that both firms setting \(p^B \) forms an equilibrium.\(^{17}\)

In the rest of the proof assume \(k_1 < qB \). Find \(p_1^0 \) such that \(Q(p_1^0, r(p_1^0)) = k_1 \). Note that \(p_1^0 > p^B \) because \(Q(p^B, r(p^B)) = qB > k_1 \) and \(Q(p_1, r(p_1)) \) is decreasing in \(p_1 \).\(^{18}\) We distinguish two cases depending on whether or not \(k_2 \) exceeds \(Q(r(p_1^0), p_1^0) \).

Case 1: \(Q(r(p_1^0), p_1^0) \leq k_2 \). We claim that \((p_1^0, r(p_1^0))\) is an equilibrium.

Firm 2 is best responding to firm 1’s price without violating its capacity constraint, therefore it has no profitable deviation.

Firm 1’s unconstrained best response to \(r(p_1^0) \) would be \(r(r(p_1^0)) \). Since \(p_1^0 > p^B \) and \(r' \in (0,1) \), we have \(p_1^0 > r(p_1^0) > p^B \), which then implies (by the

\(^{17}\)The same prices form an equilibrium when the firms do not have capacity constraints. The only action that is not available to a firm without capacity constraint that is available to it with capacity constraint is decreasing its price so much that the capacity constraint becomes binding. However, such a move clearly cannot be profitable. Therefore there is no profitable deviation from equilibrium for either firm as long as their capacities exceed the equilibrium output without capacity constraints.

\(^{18}\)This is so because \(dQ(p_1, r(p_1))/dp_1 = Q_1 + Q_2r' < Q_1 + Q_2 < 0 \).
same argument) that \(r(p_1^0) > r(r(p_1^0)) > p^B \). But then \(Q(r(r(p_1^0)), r(p_1^0)) > k_1 \), that is, firm 1’s best response to \(r(p_1^0) \) violates its capacity constraint, because \(Q(p_1^0, r(p_1^0)) = k_1, p_1^0 > r(r(p_1^0)) \), and \(Q \) is decreasing in its first argument. Therefore firm 1’s constrained best response to \(r(p_1^0) \) is \(p_1^0 \), the price for which the capacity constraint holds as an equality.

Case 2: \(Q(r(p_1^0), p_1^0) > k_2 \). In this case, find \((p_1^*, p_2^*)\) such that \(Q(p_1^*, p_2^*) = k_1 \) and \(Q(p_2^*, p_1^*) = k_2 \). We claim that \((p_1^*, p_2^*)\) is an equilibrium.

First note that \(p_1^0 < p_1^* \) and \(p_2^* < p_1^* \). The first inequality holds because \(Q(p_1^0, r(p_1^0)) = Q(p_1^*, p_2^*) = k_1, Q(r(p_1^0), p_1^0) > Q(p_2^*, p_1^*) = k_2 \), and \(Q_1 + Q_2 < 0 \). Intuitively (graphically), we move along firm 1’s iso-demand curve starting from \((p_1^0, r(p_1^0))\) in the direction where firm 2’s demand decreases, so \(p_1^* > p_1^0 \) and \(p_2^* > r(p_1^0) \). The second inequality follows because \(k_1 < k_2 \), and the firms are symmetric.

![Figure 3: Illustration for Lemma 2](image)

Now we verify that both firms play constrained best responses. As for firm 1, \(r(p_2^*) < p_1^* \) because \(p_1^* > p^B \) and \(p_1^* > p_2^* \). Therefore firm 1’s unconstrained best response to \(p_2^* \) would violate its capacity constraint, hence its constrained
best response is indeed \(p_1^* \). As for firm 2, \(r(p_1^*) < p_2^* \) as well; this is so because as we increase \(p_1 \) from \(p_1^0 \) to \(p_1^* \) while keeping \(Q(p_1, p_2) \) constant (at \(k_1 \)), the change in \(p_2 \) is greater than the increase in 2's best response. (Graphically, firm 1's iso-demand curve is steeper than firm 2's reaction curve. See the figure.) By \(r(p_1^*) < p_2^* \), the unconstrained best response of firm 2 violates its capacity constraint, hence its constrained best response is \(p_2^* \). ■

Proof of Proposition 7. Let

\[
\varphi(K; \theta) \equiv P(K; \theta)K - nc(K/n) - \{P(Q^*; \theta)Q^* - (n-1)c(k^*) - c(r((n-1)k^*; \theta))\},
\]

and

\[
\psi(q; \theta) \equiv P((n - 1)k^* + q; \theta) + r \frac{\partial P((n - 1)k^* + q; \theta)}{\partial Q} - c'(q),
\]

where \(r((n-1)k^*; \theta) \) is defined by the first-order condition \(\psi(r((n-1)k^*; \theta); \theta) = 0 \), \(Q^* \equiv (n - 1)k^* + r((n-1)k^*; \theta) \), and \(k^* \) (which depends on \(\theta \)) maximizes the expression in curly brackets in equation (17). As we have shown before, the threshold capacity level \(\hat{K} \) is uniquely defined by \(\varphi(\hat{K}; \theta) = 0 \).

We first show that \(d\hat{K}/d\theta > 0 \). Since \(\partial \varphi(\hat{K}; \theta)/\partial K < 0 \), it follows from the implicit function theorem that \(d\hat{K}/d\theta > 0 \) if and only if \(\partial \varphi(\hat{K}; \theta)/\partial \theta > 0 \).

Applying the envelope theorem (as \(k^* \) maximizes the expression in curly brackets above), we obtain

\[
\frac{\partial \varphi(\hat{K}; \theta)}{\partial \theta} = \hat{K} \frac{\partial P(\hat{K}; \theta)}{\partial \theta} - Q^* \frac{\partial P(Q^*; \theta)}{\partial \theta} - \left[P(Q^*; \theta) + Q^* \frac{\partial P(Q^*; \theta)}{\partial Q} - c'(r((n-1)k^*; \theta)) \right] \frac{\partial r((n-1)k^*; \theta)}{\partial \theta}.
\]

From the first-order condition (18), it follows that the expression in brackets is negative. Since \(r((n-1)k^*; \theta) \) is the large firm’s best response, we have \(\partial \psi(r((n-1)k^*; \theta); \theta)/\partial q < 0 \), and so (from the implicit function theorem), \(\partial r((n-1)k^*; \theta)/\partial \theta > 0 \) if and only if \(\partial \psi(r((n-1)k^*; \theta); \theta)/\partial \theta > 0 \). Indeed,

\[
\frac{\partial \psi(r((n-1)k^*; \theta); \theta)}{\partial \theta} = \frac{\partial P(Q^*; \theta)}{\partial \theta} + r((n-1)k^*; \theta) \frac{\partial^2 P((n-1)k^* + q; \theta)}{\partial Q \partial \theta} < 0.
\]

Hence, \(\partial r((n-1)k^*; \theta)/\partial \theta \). We now claim that \(\hat{K} \partial P(\hat{K}; \theta)/\partial \theta < Q^* \partial P(Q^*; \theta)/\partial \theta \).

To see this, recall that \(\hat{K} < Q^* \). From our assumption on the cross-partial
derivative of inverse demand, it then follows $0 < \partial P(\hat{K}; \theta) / \partial \theta < \partial P(Q^*; \theta) / \partial \theta$. Hence, $\partial \varphi(\hat{K}; \theta) / \partial \theta > 0$, and so $d \hat{K} / d \theta > 0$.

We now show that $\hat{K} \to 0$ as $\theta \to 0$. Our assumptions on inverse demand imply that for any fixed $K > 0$, $\lim_{\theta \to 0} \varphi(K; \theta) < 0$. The assertion then follows from the observation that $\varphi(K; \theta)$ is strictly concave in K. Next, we show that $\hat{K} \to \infty$ as $\theta \to \infty$. To see this, note that $\varphi(K; \theta)$ is maximized at $K = Q^C$, the perfectly collusive cartel output, which is implicitly defined by

$$P(Q^C; \theta) + Q^C \frac{\partial P(Q^C; \theta)}{\partial Q} - c(Q^C/n) = 0.$$

Observe that $Q^C \to \infty$ as $\theta \to \infty$. Otherwise, if Q^C were bounded from above, the l.h.s. of the above equation would become strictly positive for θ sufficiently large; a contradiction. Since $\hat{K} > Q^C$, the assertion is indeed correct.

Summing up, we have shown that \hat{K} is strictly increasing with θ, $\hat{K} \to 0$ as $\theta \to 0$, and $\hat{K} \to \infty$ as $\theta \to \infty$. Hence, there exists a unique $\hat{\theta}$ such that $\hat{K} > \hat{K}$ if and only if $\theta < \hat{\theta}$ and $K < \hat{K}$ if and only if $\theta < \hat{\theta}$. □

References

40

